Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 12(2): 193-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959957

RESUMO

The Varkud satellite ribozyme catalyses site-specific RNA cleavage and ligation, and serves as an important model system to understand RNA catalysis. Here, we combine stereospecific phosphorothioate substitution, precision nucleobase mutation and linear free-energy relationship measurements with molecular dynamics, molecular solvation theory and ab initio quantum mechanical/molecular mechanical free-energy simulations to gain insight into the catalysis. Through this confluence of theory and experiment, we unify the existing body of structural and functional data to unveil the catalytic mechanism in unprecedented detail, including the degree of proton transfer in the transition state. Further, we provide evidence for a critical Mg2+ in the active site that interacts with the scissile phosphate and anchors the general base guanine in position for nucleophile activation. This novel role for Mg2+ adds to the diversity of known catalytic RNA strategies and unifies functional features observed in the Varkud satellite, hairpin and hammerhead ribozyme classes.


Assuntos
Biocatálise , Endorribonucleases/química , RNA Catalítico/química , Domínio Catalítico/genética , Endorribonucleases/genética , Magnésio/química , Simulação de Dinâmica Molecular , Mutação , Prótons , Teoria Quântica , RNA Catalítico/genética , Estereoisomerismo
2.
ACS Catal ; 9(12): 10612-10617, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840007

RESUMO

An unique catalytic strategy was recently reported for the glmS ribozyme [Bingaman et al., Nat. Chem. Biol.2017, 13, 439-445] that involves promotion of productive hydrogen bonding of the O2' nucleophile to facilitate its activation. We provide broad evidence of this strategy in the hammerhead, pistol, and VS ribozymes and 8-17 DNAzyme, enabled by a functionally important divalent metal ion that interacts with the scissile phosphate and disrupts nonproductive competitive hydrogen bonding with the O2' nucleophile. This strategy, designated tertiary gamma (3°Î³) catalysis, illustrates an additional role for divalent ions in ribozyme catalysis.

3.
Nucleic Acids Res ; 47(2): 747-761, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30462332

RESUMO

Dmc1 catalyzes homology search and strand exchange during meiotic recombination in budding yeast and many other organisms including humans. Here we reconstitute Dmc1 recombination in vitro using six purified proteins from budding yeast including Dmc1 and its accessory proteins RPA, Rad51, Rdh54/Tid1, Mei5-Sae3 and Hop2-Mnd1 to promote D-loop formation between ssDNA and dsDNA substrates. Each accessory protein contributed to Dmc1's activity, with the combination of all six proteins yielding optimal activity. The ssDNA binding protein RPA plays multiple roles in stimulating Dmc1's activity including by overcoming inhibitory effects of ssDNA secondary structure on D-loop reactions, and by elongating D-loops. In addition, we demonstrate that RPA limits inhibitory interactions of Hop2-Mnd1 and Rdh54/Tid1 that otherwise occur during assembly of Dmc1-ssDNA nucleoprotein filaments. Finally, we report interactions between the proteins employed in the biochemical reconstitution including a direct interaction between Rad51 and Dmc1 that is enhanced by Mei5-Sae3.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Recombinação Genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Conformação de Ácido Nucleico , Rad51 Recombinase/metabolismo
4.
Nat Commun ; 9(1): 4542, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382099

RESUMO

The DIR2s RNA aptamer, a second-generation, in-vitro selected binder to dimethylindole red (DIR), activates the fluorescence of cyanine dyes, DIR and oxazole thiazole blue (OTB), allowing detection of two well-resolved emission colors. Using Fab BL3-6 and its cognate hairpin as a crystallization module, we solved the crystal structures of both the apo and OTB-SO3 bound forms of DIR2s at 2.0 Å and 1.8 Å resolution, respectively. DIR2s adopts a compact, tuning fork-like architecture comprised of a helix and two short stem-loops oriented in parallel to create the ligand binding site through tertiary interactions. The OTB-SO3 fluorophore binds in a planar conformation to a claw-like structure formed by a purine base-triple, which provides a stacking platform for OTB-SO3, and an unpaired nucleotide, which partially caps the binding site from the top. The absence of a G-quartet or base tetrad makes the DIR2s aptamer unique among fluorogenic RNAs with known 3D structure.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Quadruplex G , Motivos de Nucleotídeos , Sítios de Ligação , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/química
5.
Biochemistry ; 57(25): 3465-3472, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29733591

RESUMO

Steric constraints imposed by the active sites of protein and RNA enzymes pose major challenges to the investigation of structure-function relationships within these systems. As a strategy to circumvent such constraints in the HDV ribozyme, we have synthesized phosphoramidites from propanediol derivatives and incorporated them at the 5'-termini of RNA and DNA oligonucleotides to generate a series of novel substrates with nucleophiles perturbed electronically through geminal fluorination. In nonenzymatic, hydroxide-catalyzed intramolecular transphosphorylation of the DNA substrates, pH-rate profiles revealed that fluorine substitution reduces the maximal rate and the kinetic p Ka, consistent with the expected electron-withdrawing effect. In HDV ribozyme reactions, we observed that the RNA substrates undergo transphosphorylation relatively efficiently, suggesting that the conformational constraints imposed by a ribofuranose ring are not strictly required for ribozyme catalysis. In contrast to the nonenzymatic reactions, however, substrate fluorination modestly increases the ribozyme reaction rate, consistent with a mechanism in which (1) the 2'-hydroxyl nucleophile exists predominantly in its neutral, protonated form in the ground state and (2) the 2'-hydroxyl bears some negative charge in the rate-determining step, consistent with a transition state in which the extent of 2'-OH deprotonation exceeds the extent of P-O bond formation.


Assuntos
Hepatite D/virologia , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/metabolismo , RNA Viral/metabolismo , DNA/química , DNA/metabolismo , Vírus Delta da Hepatite/química , Vírus Delta da Hepatite/metabolismo , Humanos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Prótons , RNA Catalítico/química , RNA Viral/química , Especificidade por Substrato
6.
Biochim Biophys Acta ; 1854(11): 1737-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25828952

RESUMO

Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.


Assuntos
Marcação por Isótopo/métodos , Modelos Químicos , Ácidos Nucleicos/química , Nucleotídeos/química , Cinética , Estrutura Molecular , Isótopos de Nitrogênio/química , Ácidos Nucleicos/metabolismo , Nucleotídeos/metabolismo , Isótopos de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...